LeChatelier's Principle

(If you have your book, this is on pages 633-639)

Definition:

If a change (stress) is imposed on a system in equilibrium, the position of the equilibrium will shift in the direction to reduce (relieve) the change (stress).

There are three different changes or stresses put on a system in equilibrium that will cause an effect on the direction of the shift.

1) Addition or removal of a reactant or product in the reaction will cause an effect in the direction of the shift.
Note: Substances that are solid or liquid appear in the equilibrium expression as " 1 " and will have no effect on the equilibrium of the reaction.
2) Changes in pressure on a system due to a change in the volume of the container of the reaction will have an effect on the gas reactants or products in the system.
3) Changes in the temperature of a system will change the K_{c} or K_{p} of the system and will have
an effect on the equilibrium of the system depending on whether it is an endothermic or exothermic reaction.

LeChatelier's Principle (1)

In the following reaction system

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The equilibrium concentrations of each gas is as follows:
$\left[\mathrm{N}_{2}\right]=0.399 \mathrm{M},\left[\mathrm{H}_{2}\right]=1.197 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.202 \mathrm{M}$.

The equilibrium expression is

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=(0.202)^{2} /(0.399)(1.197)^{3} \\
& \mathrm{~K}_{\mathrm{c}}=1.70 \times 10^{-2}
\end{aligned}
$$

If I increase the concentration of NH_{3} (the product) to 0.494 M ,

$$
\begin{aligned}
& Q=(0.404)^{2} /(0.399)(1.97)^{3} \\
& Q=5.35 \times 10^{-2}
\end{aligned}
$$

Now $Q>K$ so the reaction shifts toward the reactants (left) to relieve the stress.
Likewise, if $Q<K$. the reaction would have shifted to the products (right) to relieve the stress.
*Adding a substance (aq or g , not s or I) to one side of a system in equilibrium shifts it to the opposite side.
Removing a substance from one side of a system in equilibrium shifts it to the same side. (See Interactive Example 13.13 p.635)

LeChatelier's Principle (2)

Effects of Pressure on a System—pressure only has an effect on the gases in a system.
*The addition of an "inert" gas or noble gas to a system that increases the total pressure of the system has No Effect on the concentrations or partial pressures of the system an therefore, no effect on the equilibrium.
*When the Volume of the container holding a gaseous system is reduced and therefore, the Partial Pressures of the gases increase, the system responds by reducing its own volume. This Is done by decreasing the number of gaseous molecules (The system shifts to the side with fewer
Gas molecules).
The same is true if the volume of the container is increased (decreases partial pressures). The System reacts by increasing the number of gaseous molecules (The system shifts to the side with
more Gas molecules).
Example:

$\begin{gathered} \mathbf{3} \mathbf{H}_{2}(\mathbf{g})+\mathbf{N}_{2}(\mathbf{g}) \\ (4 \mathrm{gas} \text { molec }) \end{gathered} \underset{\text { (2 gas molec) }}{\mathbf{2} \mathrm{NH}_{3}(\mathbf{g})}$	

Increased pressure due to volume decrease-shifts left (products)
Decreased pressure due to volume increase-shifts right (reactants)
(See Interactive Example 13.14 p.637)

LeChatelier's Principle (3)

Effects of Temperature on a System-Temperature changes K_{c} or K_{p} and causes a stress on the system.
*If a system is endothermic ($+\Delta \mathrm{H}$) for a reaction, it means that the product (right) side of the reaction
is endothermic $(+)$. Therefore, the reactant side (or the reverse side of the reaction) is exothermic (-).
If the system is exothermic $(-\Delta \mathrm{H})$ for a reaction, it means that the product (left) side of the reaction is
exothermic (-). Therefore, the reactant side (or the reverse side of the reaction) is endothermic (+).

If heat is added (+) to the system, the reaction will shift toward the endothermic or + side of the reaction.
If heat is removing (-) or cooling a system, the reaction will shift to the exothermic or - side of the rxn.

Example: $\quad 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \longleftrightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=+92 \mathrm{~kJ}$
$(-) \quad(+)$
Endothermic Reaction above.
Product side is (+), Reactant side is (-).
Adding heat shifts right toward the endothermic (+) side.
Removing heat or cooling shifts left toward the exothermic (-) side.
(See Interactive Example 13.15 p. 639)
Also see Summary of LeChatelier's Principle under 13.15 on the same page.

