AP Chemistry
 Mrs. Cucciniello

Name
Acid/Base Test Ch. 14 and 15

Part I

Multiple Choice:

1) Which of the following is the strongest base?
a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
b) LiOH
c) $\mathrm{B}(\mathrm{OH})_{3}$
d) $\mathrm{Al}(\mathrm{OH})_{3}$
2) What is the pH of a $0.050 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ solution?
a) 1.30
b) 13.00
c) 1.00
d) 12.70
3) According to Bronsted-Lowry acid/base theory, which one of the following is not an acid/conjugate base pair?
a) $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$
b) $\mathrm{CH}_{3} \mathrm{OH}_{2}{ }^{+} / \mathrm{CH}_{3} \mathrm{OH}$
c) $\mathrm{HI} / \mathrm{I}^{-}$
d) $\mathrm{HSO}_{4}^{-} / \mathrm{SO}_{4}{ }^{2-}$
e) $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$
4) The substance $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is considered:
a) a strong Bronsted-Lowery acid
b) a strong Bronsted-Lowery base
c) a weak Bronsted-Lowery acid
d) a weak Bronsted-Lowery base
e) neutral and has no effect on pH
5) Which of the following possesses the greatest concentration of hydronium ion?
a) a solution with a pH of 3.00
b) a $1 \times 10^{-3} \mathrm{M}$ solution of HNO_{3}
c) a solution with a pOH of 12.2
d) pure liquid water
6) Which of the following is the strongest acid?
a) $\mathrm{HNO}_{2}\left(\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}\right)$
b) $\mathrm{HCN}\left(\mathrm{K}_{\mathrm{a}}=4.9 \times 10^{-10}\right)$
c) $\mathrm{HClO}\left(\mathrm{K}_{\mathrm{a}}=3.0 \times 10^{-8}\right)$
d) $\mathrm{HF}\left(\mathrm{K}_{\mathrm{a}}=6.8 \times 10^{-4}\right)$
7) According to the Lewis definition, an acid is a species
a) having a hydrogen ion
b) donating a pair of electrons
c) accepting a pair of electrons
d) accepting a hydrogen ion
8) All of the following are potential Bronsted bases except
a) NH_{3}
b) $\mathrm{H}_{2} \mathrm{O}$
c) CH_{4}
d) CN^{-}
9) Which metal oxide is most basic under conditions of equal molar concentration in water?
a) $\mathrm{Al}_{2} \mathrm{O}_{3}$
b) BaO
c) $\mathrm{K}_{2} \mathrm{O}$
d) ZnO
e) $\mathrm{Ag}_{2} \mathrm{O}$
10)Which element in Group 15 (5A) forms the most basic oxide?
a) N
b) P
c) As
d) Sb
e) Bi

Part II

1) In the following acid/base reactions, label the acid, base, conjugate acid, and conjugate base.
a)
\qquad
\qquad
\qquad $+\mathrm{Cl}^{-}$
b) \qquad
$\leftrightarrow \quad \mathrm{HS}$
$+\quad \mathrm{NH}_{3}$
2) Designate the following Acid/base reactions as Arrhenius, BronstedLowry, or Lewis:
a) $\mathrm{AlCl}_{3}+\mathrm{Cl}^{-} \longleftrightarrow \mathrm{AlCl}_{4}^{-}$
b) $\mathrm{HNO}_{3}+\mathrm{NH}_{3} \leftrightarrow \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}$ \qquad
c) $\mathrm{HCl}+\mathrm{NaOH} \longleftrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ \qquad
d) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{F}^{-} \leftarrow \mathrm{HSO}_{4}^{-}+\mathrm{HF}$ \qquad
3) Tell whether the following reactions will yield a neutral, acidic, or basic solution at equivalency.
a) $\mathrm{HCl}+\mathrm{NH}_{3}$
b) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH}$
c) $\mathrm{HCl}+\mathrm{NaOH}$
d) $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{a}}=4.3 \times 10^{-7}, \mathrm{~K}_{\mathrm{b}}=1.8 \times 10^{-5}\right)$ \qquad
4) What is the pH of a solution of 0.035 M NaOH ?
5) What are the pH and pOH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $3.08 \times 10^{-4} \mathrm{M}$?
6) What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution with a pH of 11.12 ?
7) What is the $\left[\mathrm{OH}^{-}\right]$of a solution with a pH of 8.52 ?
8) What are the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH of a 0.080 M solution of HNO_{3} ?
9) Acetic acid has a K_{a} of 1.80×10^{-5}. Determine the following quantities in a 1.15 M acetic acid solution.
a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ \qquad
b) pH \qquad
c) $\left[\mathrm{OH}^{-}\right]$ \qquad
d) $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$ \qquad
e) $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ \qquad
10)Calculate the pH of a 0.0500 M solution of $\mathrm{NaC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$. K_{a} of $\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ is 6.3×10^{-5}.
11)Calculate the percent ionization of 1.5 M benzoic acid $\left(\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)$. $\mathrm{K}_{\mathrm{a}}=6.3 \times 10^{-5}$
10) Calculate the K_{a} for an acid if its percent ionization is 2.8% in a 0.10 M solution.
13)Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$, a weak base, ionizes by the reaction $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$with a $\mathrm{K}_{\mathrm{b}}=4.2 \times 10^{-4}$. The pH of the aqueous solution is 10.65 . What is the concentration of the base?
