Thermodynamics Test for College Chemistry II

Name

Part I (Multiple Choice) (3pts each)

- 1) For which of the following processes would ΔS be negative?
 - a) the melting of ice
 - b) the freezing of water
 - c) the evaporation of a liquid
 - d) the breakup of a large molecule into smaller molecules
 - e) these all have positive ΔS values
- 2) If a reaction is spontaneous, what can be said about the reverse reaction under the same conditions?
 - a) The reverse rxn is non-spontaneous.
 - b) The reverse rxn is spontaneous also.
 - c) The reverse rxn is at equilibrium.
 - d) This cannot be determined.
- 3) Which of the following reactions would have a positive value for ΔS ?
 - a) $3 \operatorname{NO}(g) \rightarrow \operatorname{NO}_2(g) + \operatorname{N}_2O(g)$
 - b) $2 \operatorname{CO}_2(g) \rightarrow 2 \operatorname{CO}(g) + \operatorname{O}_2(g)$
 - c) 2 I(g) \rightarrow I₂(g)
 - d) NH₃(g) \rightarrow NH₃(l)
 - e) None of these rxns would have a positive ΔS .
- 4) Under which one of the following conditions will the following reaction be spontaneous as written? 2 CO(g) + O₂(g) → 2 CO₂(g)
 ΔH° = -565.97 kJ/mol
 ΔS° = -173.0 J/mol K
 - a) spontaneous at all temperatures
 - b) spontaneous at high temperatures
 - c) spontaneous at low temperatures
 - d) not spontaneous at any temperature
- 5) The Second Law of Thermodynamics states that:
 - a) the entropy of a perfect crystal is zero at a temperature of 0 K.
 - b) a reaction is spontaneous when $k_c = k_p$
 - c) the energy in a reaction may not be created or destroyed.
 - d) Exothermic reactions tend to be spontaneous.
 - e) The entropy of the universe must increase for a process to occur spontaneously.
- 6) Which of the following correctly describes a reaction at equilibrium?
 - a) $\Delta G^{o} = 1$ d) $\Delta G = 0$
 - b) k = 1 e) $\ln k = 0$
 - c) $\Delta G = \Delta G^{\circ}$

Part II Problems:

1) Would you expect the following reactions to be spontaneous at **low, high, all, or no** temperatures?

$\frac{N_2(g) + 3 F_2(g)}{2NF_3(g)} \rightarrow 2NF_3(g)$	$\Delta H^0 = -249 \text{ kJ}$
$\frac{N_2(g) + 3Cl_2(g)}{2} \rightarrow 2 NCl_3(g)$	$\Delta H^0 = +460 \text{ kJ}$
$2 \operatorname{NF}_2(g) \operatorname{N}_2F_4(g)$	$\Delta H^0 = -85 \text{ kJ}$
$2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$	$\Delta H^0 = +485 \text{ kJ}$
$2 \operatorname{POCl}_3(g) \rightarrow 2 \operatorname{PCl}_3(g) + \operatorname{O}_2(g)$	$\Delta H^0 = -515 \text{ kJ}$

2) The standard molar enthalpies of formation of KClO₃ (s), KCl (s), and O₂ (g) are -391 kJ, -435.9 kJ, and 0 kJ respectively. ΔS^0 for the reaction is +0.4944 kJ/K.

 $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$

What is the ΔH^0 and the ΔG^0 for this reaction at 298 K? Is it spontaneous? Why?

3) The standard molar free energies of formation (ΔG⁰_f of NH₃, N₂H₄, and H₂) are -16.66 kJ, +159.4 kJ, and 0 kJ, respectively. What is the ΔG⁰ of the reaction 2 NH₃ (g) → N₂H₄ (g) + H₂ (g) Is it spontaneous? Why?

4) Write the thermodynamic equilibrium constant for 5the following reversible reactions and tell if the constant is k_p, k_c, or k.

5) In the chemical reaction $N_2H_4(g) \rightarrow N_2(g) + 2H_2(g)$, the partial pressures of the gases are 6.0 atm, 0.001 atm, and 0.0002 atm respectively. What is the equilibrium K_p for the reaction and what is the ΔG^0 of the reaction at 298 K? Is the reaction spontaneous? Why?

6) Given the following data at 298 K,

	$\Delta S^{0}_{f} (J/mol-K)$	ΔH^{0}_{f} (kJ/mol)
NO ₂ (g)	240.45	33.8
N ₂ O ₄ (G)	304.33	9.66

a) Calculate the ΔH^0 , ΔS^0 , and then the ΔG^0 (use Free Energy equation) for the following reaction:

$\Delta H^0 =$	
$\Delta S^0 =$	
$\Delta G^0 =$	

- $2\mathrm{NO}_{2}\left(\mathrm{g}\right) \iff \mathrm{N}_{2}\mathrm{O}_{4}\left(\mathrm{g}\right)$
- b) Is the formation of N_2O_4 (g) spontaneous?
- c) What is the value of the equilibrium constant for this reaction?

7) For the reaction PCl₅ (g) $\leftarrow \rightarrow$ PCl₃ (g) + Cl₂ (g) at 298 K, k_p = 1.87 x 10⁻⁷, $\Delta S^0 = 181.92$ J/mol-K.

- a) Is this reaction spontaneous at 298K? Explain why or why not.
- b) Compute the value of ΔH^0 for the reaction.
- c) Compute ΔG^0 for this reaction at 344 K.

a) _

- b) $\Delta H^0 =$ _____
- c) ΔG^0 at $46^0 C =$

Needed Information

 $\Delta \mathbf{G}^{\mathbf{0}} = -\mathbf{RT} \ln \mathbf{k}$ $\Delta \mathbf{G}^{\mathbf{0}} = \Delta \mathbf{H}^{\mathbf{0}} - \mathbf{T} \Delta \mathbf{S}^{\mathbf{0}}$

 $\mathbf{R} = \mathbf{8.314 x 10^{-3}}$ (units in kJ) $\mathbf{k} =$ Products/Reactants (power of coefficient)

 $\Delta H^0{}_{rxn} = \sum n \Delta H_{f(prod)}$ - $\sum m \Delta H_{f(react)}$

 $\Delta S^0{}_{rxn} = \sum n \Delta S_{f(ptod)}$ - $\sum m \Delta S_{f(react)}$

 $\Delta G^0_{\ rxn}$ = $\sum n \Delta G_{f(prod)}$ - $\sum m \Delta G_{\ f(react)}$