Honors Pre-AP Chemistry-Chapter 6-Thermochemistry Test

Name_____ Date_____ Section____

Answer the following questions. Questions 1-8 (12 pts each). Question 9 (20 pts).

1) If 1.507 g of NH₄Cl is dissolved in 100.0 g of water at 25°C, the temperature of the water drops to 23.98°C. Calculate the heat of the <u>solution</u> (q_{sol}), the heat of the <u>reaction</u> (q_{rxn}), and the ΔH_{rxn} in (kJ/mol). The "s" for water is 4.184 J/g°C.

2) When 57.7 g of copper metal at 99.0°C is added to 100.0 g of water at 27.5°C, the final temperature is found to be 31.0°C. What is the molar heat capacity "s" of the metal? The "s" of the water is 4.184 J/g⁰C

3) A 2.02 g sample of quinine, C₆H₄O₂, is burned in a bomb calorimeter whose heat capacity "C_p" is 7.845 kJ/°C. The temperature of the calorimeter increases from 23.44°C to 30.57°C. What is the heat of combustion per gram of the quinine? Per mole of quinine?

4) For the following reaction, $2 C(s) + H_2(g) \rightarrow C_2 H_2(g)$

Apply Hess's Law to the following steps for this reaction.

C₂H₂ + 5/2 O₂ → 2CO₂ + H₂O Δ H = -1299.6 kJ C + O₂ → CO₂ Δ H = -393.5 kJ H₂ + ¹/₂O₂ → H₂O Δ H = -285.9 kJ

 5) For the following reaction, C₂H₂ (g) + 5 N₂O (g) → 2 CO₂ (g) + H₂O (g) + 5 N₂ (g)
Apply Hess's Law to the following steps for this reaction.

 $2 C_2H_2 + 5 O_2 \rightarrow 4 CO_2 + 2 H_2O \qquad \Delta H = -2512 \text{ kJ}$ $N_2 + \frac{1}{2}O_2 \rightarrow N_2O \qquad \Delta H = 104 \text{ kJ}$

6) Consider the reaction between solid silver sulfide and liquid water producing silver metal, hydrogen sulfide gas, and oxygen gas. Note: ΔH_f of Ag₂S = -31.8 kJ/mol. H₂O = -241.8 kJ/mol H₂S = -20.2 kJ/mol Ag = 0

$$2 \operatorname{Ag_2S}(s) + 2 \operatorname{H_2O}(l) \rightarrow 2 \operatorname{H_2S}(g) + \operatorname{O_2}(g) + 4 \operatorname{Ag}(s)$$

What is the enthalpy of the reaction?

What is the heat required to produce 0.0928 mol of silver? (EC)

7) The complete combustion of acetone, C_3H_6O , results in the liberation of 1790 kJ.

C₃H₆O (l) + 4 O₂ (g) → 3 CO₂ (g) + 3 H₂O (l) Δ H = -1790 kJ

 $\label{eq:2.1} \begin{array}{l} \Delta H_{f} \mbox{ for } C_{3}H_{6}O = ? \\ O_{2} = 0 \\ CO_{2} = -393.5 \mbox{ kJ/mol} \\ H_{2}O = -285.8 \mbox{ kJ/mol} \end{array}$

8) What is the ΔE for a reaction (system) if the surroundings transfer 375 J of heat to the system and the system exerts 2.3 atm of pressure on the surroundings changing the volume by 5.2 L?
Note: (101.3 J/atm L)

9) The standard molar enthalpies of formation for CH₄ (g) and C₂H₆ (g) as follows: -74.8 kJ/mol, and -84.68 kJ/mol respectively.

Calculate the heat of combustion (ΔH_{rxn}) for these hydrocarbons when the combine with gaseous oxygen (O₂) to produce CO₂ (g) and H₂O (l).

 $\Delta H_{f} CO_{2} (g) = -393.5 \text{ kJ/mol}$ $\Delta H_{f} H_{2}O (l) = -285.8 \text{ kJ/mol}$

What is the $\Delta H/mol$ for each hydrocarbon reaction. Which one is the more efficient per mole? (Hint: after calculating ΔH of the reactions, set up ratios to find ΔH for one mole of hydrocarbon)

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(l) ///// 2 C_2H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2O(l)$

Equations

 $q = s \ m \ \Delta T \qquad s_{H2O} = 4.184 \ J/g \ ^{o}C$ $q_{rxn} = -q_{sol} \qquad q_{rxn} = -q_{cal}$ $q_{bomb \ cal} = C_p \ \Delta T$ $q_{metal} = -q_{H2O} \qquad or \qquad (m \ s \ \Delta T)_{metal} = -(m \ s \ \Delta T)_{H2O}$ $\Delta E = q + w \qquad w = (P\Delta V)(101.3)$ $\Delta H_{rxn} = \sum n \ \Delta H_{f \ (prod)} - \sum n \ \Delta H_{f \ (react)}$