Honors Pre-AP Chemistry—Chapter 7 Quantum Theory and Tendencies in the Periodic Table		NameSection		
I) Define the following:				
	1)	1 st Ionization Energy		
	2)	Electron Affinity		
	3)	Square of w		
	4)	Degenerate (define an	nd tell what orbitals are deg	enerate)
	5)	Pauli Exclusion Princ	ciple	
	6)	Hund's Rule		
	7)	Heisenberg's Uncerta	ninty Principle	
II) Fill in the following Chart on the 4 Quantum Numbers:				
<u>Let</u>	<u>ter</u>	Rep. of Number	What It Stands For/ Describ	oes Range
1.				
2.				
3.				
4.				

Basic Orbital (letter & number)	Basic Orbital (#of orientations) Basic Orbital Shape
	nd wavelength of a photon emitted when an excited hydrogen level to the 2 nd energy level. (Include units.)
Frequency =	
Energy = Wavelength =	
V) Give the (long form) electron co or ions:	onfiguration and orbital diagrams of the following elements
Ge	
GC .	
Tc	

Al
$ m Mn^{4+}$
${f S}^2$
In the above electron configurations and orbital diagrams, give the 4 quantum numbers for the given electron: Please circle the electron in the orbital diagram and write the quantum numbers below the boxes as well as in the blank (,,) below.
27 th e ⁻ in Ge (,)
Last e in Tc (,
7 th e ⁻ in Al (,
20 th e ⁻ in Mn ⁴⁺ (,
$17^{\text{th}} \text{ e}^{-} \text{ in } S^{2-} (\underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \underline{\hspace{1cm}})$

ORBITAL I	DIAGRAMS)		
Te			
P ³ -			
Cd^{+2}			
VII) Fill in tl	he Chart below that describes t	he Trends of the Periodic Table:	
	Trend	Reason	
Atomic	Across:	Across:	
Radii	Down:	Down:	
Ionization	Across:	Across:	
Energy	Down:	Down:	
Electron Affinity	Across:	Across:	
	Down:	Down:	
Ionic Radii	As +ion increases:	As +increases:	
Kadii	As –ion increases:	As –ion increases:	
	Down:	Down:	
$c = v \lambda$	ations and constants: E = h v $E = -2.178 x10^{-34} J s c = 3.00 x 10^8 m s^{-3}$	$10^{-18} \mathrm{J} (^1/n_{\mathrm{f}}{}^2 - 1/n_{\mathrm{i}}{}^2)$	

VI) Give the Abbreviated (Nobel Gas) configuration for the following: (DO NOT GIVE

Name		 _
st atomic radius?		

(VIII) Multiple Choice Questions:

	TIME OF THE PROPERTY OF THE PR
1)	Which of the following has the largest atomic radius? a) Ba b) Mo c) Ag d) Sn e) Se
2)	Electrons in an orbital with the quantum number ℓ = 3 is a/an a) d orbital b) p orbital c) f orbital d) s orbital e) g orbital
3)	Which of the following sets of quantum numbers is not possible? a) $(4, 3, -2, +1/2)$ b) $(3, 2, -3, -1/2)$ c) $(3, 0, 0, +1/2)$ d) $(3, 3, 1, -1/2)$ e) $(2, 0, 0, -1/2)$
4)	What element has the smallest ionization energy? a) Cl b) Na c) Be d) K
	e) As
5)	What element has the largest ionization energy? a) Ni b) Al c) Na d) Kr e) Bi
6)	Which element has the largest radius? a) Na ⁺ b) K ⁺ c) Ca ²⁺ d) Cl ⁻ e) N ³⁻

7)	Which of the following are isoelectronic to each other? (Pick 2 answers)
	a) F ⁻
	b) B ²⁺
	c) Mg^{2+}
	d) Li ⁺
	e) Cl ⁻
8)	What is the difference in the electron configuration of ¹⁴ C and ¹² C?

- - a) Carbon-14 weighs more than Carbon-12.
 - b) Carbon-14 has more protons than Carbon-12.
 - c) Carbon-12 has fewer neutrons than Carbon-14.
 - d) There is no difference in the electron configuration between ¹⁴C and ¹²C.
- 9) In what orbital(s) do electrons ionize in Co when Co becomes a 2+ ion?
 - a) 3d
 - b) 2s
 - c) 4s
 - d) 3p
- 10) The symbol Eψ represents
 - a) The energy of an electron
 - b) The wave function of light
 - c) The photoelectric effect
 - d) An orbital's wave function